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Standard flood return level estimation is based on extreme value analysis as-
suming independent extremes, i.e. fitting a model to excesses over a threshold
or to annual maximum discharge. The assumption of independence might not
be justifiable in many practical applications. The dependence of the daily run-
off observations might in some cases be carried forward to the annual maxi-
mum discharge. Unfortunately, using the autocorrelation function, this effect
is hard to detect in a short maxima series. One consequence of dependent an-
nual maxima is an increasing uncertainty of the return level estimates. This
is illustrated using a simulation study. The confidence intervals obtained from
the asymptotic distribution of the Maximum-Likelihood estimator (Mle) for
the generalised extreme value distribution (Gev) turned out to be too small
to capture the resulting variability. In order to obtain more reliable confi-
dence intervals, we compare four bootstrap strategies, out of which one yields
promising results. The performance of this semi-parametric bootstrap strat-
egy is studied in more detail. We exemplify this approach with a case study:
a confidence limit for a 100-year return level estimate from a run-off series in
southern Germany was calculated and compared to the result obtained using
the asymptotic distribution of the Mle.

11.1 Introduction

Many achievements regarding extreme value statistics and the assessment of
potential climate change impacts on frequency and intensity of extreme events
have been made in the last years, summarised for instance in [11.34], [11.49]
or [11.45]. The IPCC stated that it is very likely for the frequency of intense
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precipitation to increase [11.32] with increasing global mean temperature. This
implies changes in precipitation patterns, a major factor – among some others
– for the intensity and frequency of floods, which ultimately can cause tremen-
dous consequences for nature and societies in a catchment area. This has been
already observed in many regions of the world [11.37].

A pressing question is thus whether heavy rain or severe floods become
more frequent or intense. Some concepts make use of non-stationary models,
e.g., Chapter 5, [11.16, 11.33], or try to identify flood producing circulation
patterns [11.2]. A variety of approaches assess changes by comparing windows
covering different time spans [11.3]. This procedure is especially useful for
getting an impression of possible further developments by comparing GCM
control and scenario runs [11.38,11.57]. A useful indicator for changes in flood
frequency and magnitude is the comparison of return level estimates. For this
purpose a reliable quantification of the uncertainty of return level estimates is
crucial.

Alerted by an seemingly increasing flood risk, decision makers demand for
quantitative and explicit findings for readjusting risk assessment and manage-
ment strategies. Regional vulnerability assessments can be one strategy to deal
with the threat of extremes, such as floods or heat waves (e.g., [11.36]). Other
approaches try to anticipate extreme scenarios by the help of GCM model runs.
The development of risk assessment concepts, however, has still a long way to
go, since forecasting of extreme precipitation or floods is highly uncertain (cf.
for instance [11.42]). Another potential problem in the risk assessment frame-
work is the quantification of uncertainty in extreme value statistics. In situa-
tions where common statistical approaches might not be applicable as usual,
e.g., dependent records, specification of uncertainty bounds for a return level
estimate cannot be made on the basis of the mathematically founded asymp-
totic theory. The simplified assumption of independent observations usually
implies an underestimation of this uncertainty [11.4,11.13,11.35]. The estima-
tion of return levels and their uncertainty plays an important role in hydrologi-
cal engineering and decision making. It forms the basis of setting design values
for flood protection buildings like dikes. Since those constructions protect fa-
cilities of substantial value or are by themselves costly objects, it is certainly
of considerable importance to have appropriate concepts of estimation and
uncertainty assessment at hand. Otherwise severe damages, misallocation of
public funds, or large claims against insurance companies might be possible.
Thus, the approach presented in this contribution focuses on an improvement
of common statistical methods used for the estimation of return levels with
non-asymptotic bootstrap method.

In the present article, we focus on the block maxima approach and in-
vestigate the maximum-likelihood estimator for return levels of autocorrelated
run-off records and its uncertainty. In a simulation study, the increase in uncer-
tainty of a return level estimate due to dependence is illustrated. As a result of
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comparing four strategies based on the bootstrap, we present a concept which
explicitly takes the autocorrelation into account. It improves the estimation of
confidence intervals considerably relative to those provided by the asymptotic
theory. This strategy is based on a semi-parametric bootstrap approach involv-
ing a model for the autocorrelation function (Acf) and a resampling strategy
from the maxima series of the observations. The approach is validated using
a simulation study with an autocorrelated process. Its applicability is exem-
plified in a case study: we estimate a 100-year return level and a related 95%
upper confidence limit under the different assumptions of independent and de-
pendent observations. The empirical run-off series was measured at the gauge
Vilsbiburg at the river Große Vils in the Danube catchment.

The paper is organised as follows: Section 11.2 describes the basic theory
of the block maxima approach of extreme value statistics and the associated
parameter estimation. Section 11.3 illustrates the effect of dependence on the
variability of the return level estimator. In Sect. 11.4 the bootstrap strategies
are presented including the methodological concepts they require. The perfor-
mance of the most promising approach is evaluated in Sect. 11.5, followed by
a case study in Sect. 11.6. A discussion and conclusions in Sects. 11.7 and 11.8
complete the article. Details regarding specific methods used are deferred to
the appendix 11.10.

11.2 Basic Theory

11.2.1 The Generalised Extreme Value Distribution

The pivotal element in extreme value statistics is the three types theorem, dis-
covered by Fisher and Tippett [11.22] and later formulated in full generality
by Gnedenko [11.23]. It motivates a family of probability distributions, namely
the general extreme value distributions (Gev), as models for block maxima
from an observed record, e.g., annual maximum discharge. We denote the max-
ima out of blocks of size n as Mn. According to the three types theorem, for n
large enough the maxima distribution can be approximated by

Pr{Mn ≤ z} ≈ G(z), (11.1)

where G(z) is a member of the Gev family (cf. App. 11.10.1).
The quality of the approximation in Eq. (11.1) depends in the first place

on the block size n, which in hydrologic applications naturally defaults to one
year, n = 365. Further influencing factors are the marginal distribution of the
observed series and – a frequently disregarded characteristic – its autocorre-
lation. Fortunately, the three types theorem holds also for correlated records
under certain assumptions (cf. App. 11.10.1). The quality of approximation,
however, is affected by the correlation as demonstrated in the following.
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We compare records of white noise and a simple correlated process (Ar[1],
cf. Sect. 11.4.3) with the same (Gaussian) marginal distribution. For different
block sizes n, we extract 2 000 block maxima from a sufficiently long record.
Subsequently, the maxima are modelled with a Gumbel distribution being the
appropriate limiting distribution in the Gaussian case [11.21]. We measure
the quality of approximation for different n using the negative log-likelihood l
(cf. Sect. 11.2.2). Figure 11.1 shows a decreasing negative log-likelihood with
increasing block sizes n for the uncorrelated and the correlated record. This im-
plies that the approximation in general ameliorates with block size n. However,
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Fig. 11.1. Quality of approximation of a Gumbel fit to 2 000 maxima of realizations of a white noise
and an Ar[1] process for different block sizes n. The lines connect the means of 1 000 realizations,
the shadows mark the mean plus/minus one standard deviation. The vertical line marks a block
size of n = 365.

for all n the approximation is better for the uncorrelated series than for the
Ar[1] series. This finding is consistent with dependency reducing the effective
number of data points [11.62], which in this case translates into a reduction
of effective block size. The difference in approximation between the correlated
and the uncorrelated case vanishes with increasing n.

11.2.2 GEV Parameter Estimation

To fully specify the model for the extremes, we estimate the Gev parameters
from the data. Estimates can be obtained in several ways: probability weighted
moments [11.30, 11.31], maximum likelihood (Ml) [11.12, 11.53] or Bayesian
methods [11.12, 11.14, 11.54]. These different approaches have advantages and
drawbacks which are discussed in e.g., [11.13,11.31] and [11.55]. In the following
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we focus on Ml estimation as the most general method. Within this framework
models can be easily extended, for example to non-stationary distributions
[11.34].

Let θ̂ = (µ̂, σ̂, ξ̂) be the maximum-likelihood estimate (cf. App. 11.10.2) for
the location (µ), scale (σ), and form (ξ) parameter of the Gev. For large block
sizes n approximate (1 − α)100% confidence intervals for these estimates can
be obtained from the Fisher information matrix IE as θ̂j ± zα

2

√

βj,j; with βj,k

denoting the elements of the inverse of IE and zα
2

the (1 − α
2
)-quantile of the

standard normal distribution (cf. App. 11.10.2).
The m-year return level can be calculated straight forwardly once the loca-

tion, scale and shape parameter are estimated. In case of the Gumbel distri-
bution the equation reads

r̂m = µ̂− σ̂ log(y), (11.2)

with y = − log(1 − 1
m

). An approximated confidence interval for r̂m can be
obtained using the delta method described in App. 11.10.2 [11.12].

For maximum-likelihood estimation of the Gev parameters, we use the
package evd [11.56] for the open source statistical language environment R
[11.50]1.

11.3 Effects of Dependence on Confidence Intervals

Annual maxima from river run-off frequently appear uncorrelated from an in-
vestigation of the empirical Acf. The left panel in Fig. 11.2 shows the Acf

of the annual maxima series from the gauge Vilsbiburg (solid) and of a simu-
lated record (dotted). Both records contain 62 values and their Acf estimates
basically do not exceed the 95% significance level for white noise. If a longer
series was available, as it is the case for the simulated record, significant auto-
correlation of the annual maxima are revealed by the Acf, Fig. 11.2 (right).
This implies that considering annual maxima from run-off records a priori as
uncorrelated can be misleading.

The Ml-estimator relies on the assumption of independent observations
and is thus, strictly speaking, not correct for dependent observations. The
main effect is that standard errors are underestimated if obtained from the
Fisher information matrix [11.15]. In the following we illustrate this effect
by a Monte-Carlo (Mc) simulation study using realizations of a long-range2

dependent process (Far[1,d], cf. Sect. 11.4.3) with Hurst exponent H = 0.75
(or, equivalently, fractional differencing parameter d = H − 0.5 = 0.25). To
ameliorate resemblance to a daily run-off series, we transform the Gaussian

1 Both are freely available from http://cran.r-project.org
2 A process is long-range dependent, if its autocorrelation function is not summable, cf. 11.4.3.
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Fig. 11.2. Autocorrelation of the empirical maxima series and a section of same length cut out
of the simulated series (left). The right panel shows the Acf of the full simulated maxima series
(length=6 200). The 95% significance levels are marked as dashed lines.

series Xt with an exponential function. The resulting record Zt = exp(Xt) is
then log-normally distributed.

Considering Zt as 100 years of daily run-off (N = 36 500), we perform an
extreme value analysis, i.e. we model the annual maxima series by means of
a Gev. Since the marginal distribution is by construction log-normal, we re-
strict the extreme value analysis to a Gumbel distribution which is the proper
limiting distribution in this case. Exemplarily, a 100-year return level is esti-
mated using the Mle (cf. Sect. 11.2.2). Repeating this for 10 000 realizations
of Zt yields a frequency distribution representing the variability of the return
level estimator for the Far[1, d] process, shown as histogram in Fig. 11.3 (left
panel). An analogous simulation experiment has been carried out for an un-
correlated series with a log-normal distribution (Fig. 11.3, right panel). Both
histograms (grey) are compared with the limiting distribution (solid line) of
the Mle (Eq. (11.19)) evaluated for an ensemble member with return level
estimate close to the ensemble mean. For the uncorrelated series the limiting
distribution provides a reasonable approximation in the sense that it roughly
recovers the variability of the estimator. In the presence of correlation, the es-
timators variability is underestimated. This indicates that confidence intervals
derived from the Mle’s limiting distribution are not appropriate here.

Alternatively, confidence intervals can be obtained using the profile likeli-
hood which is frequently more accurate [11.12]. Table 11.1 compares the upper
limits of two-sided confidence intervals for three α-levels obtained using profile
likelihood to the limiting distribution and the Monte Carlo simulation. The
limits from the profile likelihood are indeed for the correlated and the un-
correlated process closer to the limits of the Monte Carlo ensemble. For the
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Fig. 11.3. Histogram (grey) of the estimated 100-year return levels from the Mc ensemble of 10 000
realization of the Far[1, d] process with fractional difference parameter d = 0.25 (or equivalently
H = 0.75) and Ar parameter φ1 = 0.9 (left). The right panel shows the result for a white noise
process. The realizations contain N = 36 500 data points. The solid line shows a Gaussian density
function representing the limiting distribution of the 100-year return level estimator derived from
the Fisher information matrix for one ensemble member.

Table 11.1. Upper limits of two-sided confidence intervals for various confidence levels obtained
from the asymptotic distribution (Asympt.), the profile likelihood approach (Profile) and the Monte
Carlo ensemble (Mc).

Uncorrelated Series
Level Asympt. Profile Mc

0.68 45.97 46.10 46.69
0.95 48.33 48.90 50.42
0.99 49.84 50.87 53.10

Correlated Series
Level Asympt. Profile Mc

0.68 52.72 53.00 56.91
0.95 56.21 57.19 67.26
0.99 58.43 60.12 75.34

correlated process this improvement is not satisfying, since the difference to
the Monte Carlo limit is still about 20% of the estimated return level.

To facilitate the presentation in the following, we compare the results from
the bootstrap approaches to the confidence intervals obtained using the asymp-
totic distribution.

11.4 Bootstrapping the Estimators Variance

We discuss non-asymptotic strategies to more reliably assess the variability
of the return level estimator. These strategies are based on the bootstrap,
i.e. the generation of an ensemble of artificial maxima series. These series are
simulated using a model which has been motivated by the data [11.17]. In
the given setting we estimate the return levels for each ensemble member and
study the resulting frequency distribution.

There are various strategies to generate ensembles. Four of them will be
briefly introduced and, as far as necessary, described in the following.
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bootstrapcl. The first approach is a classical bootstrap resampling of the
maxima [11.17, 11.19], denoted in the following as bootstrapcl: one ensemble
member is generated by sampling with replacement from the annual maxima
series. Autocorrelation is not taken into account here.

iaaftd. We denote the second strategy as iaaftd, it makes use of the daily
observations. Ensemble members are obtained using the iterative amplitude ad-
justed Fourier transform (Iaaft) – a surrogate method described in Sect. 11.4.4.
The Iaaft generates artificial series (so-called surrogates) preserving the dis-
tribution and the correlation structure of the observed daily record. Subse-
quently, we extract the maxima series to obtain an ensemble member. Linear
correlation is thus accounted for in this case.

bootstrapfp. The third strategy is a full parametric bootstrap approach de-
noted as bootstrapfp. It is based on parametric models for the distribution and
the autocorrelation function of the yearly maxima. This approach operates on
the annual maxima in order to exploit the Fisher-Tippett theorem motivating
a parametric model for the maxima distribution.

bootstrapsp. The fourth strategy is a semi-parametric approach, which we
call bootstrapsp. It similarly uses a parametric model for the Acf of the max-
ima series, but instead of the Gev we choose a non-parametric model for the
distribution.

While the first two strategies are common tools in time series analysis and
are well described elsewhere [11.17, 11.52], we focus on describing only the
full-parametric and semi-parametric bootstrap strategy.

11.4.1 Motivation of the Central Idea

A return level estimate is derived from an empirical maxima series which can
be regarded as a realization of a stochastic process. The uncertainty of a return
level estimate depends on the variability among different realizations of this
process. As a measure of this variability, we consider the deviation of a real-
ization’s empirical distribution function from the true distribution function. If
this variability is low, it is more likely to have obtained a good representative
for the true maxima distribution from one sample. For a high variability in-
stead, it is harder to get a representative picture of the underlying distribution
from one sample. We illustrate this effect using long realizations (N = 10 000)
from the correlated and the uncorrelated process introduced in Sect. 11.3.
We compare the difference between the distributions F̂s(x) of a short section
(N = 100) of a realization and the entire realization’s distribution F̂0(x) by
means of the Kolmogorov-Smirnov distance D = maxx |F̂s(x)− F̂0(x)| [11.18].
Smaller distances D indicate a larger similarity between F̂s and F̂0. Figure 11.4
shows the cumulative distribution function F̂ (D) of these distances D for an
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uncorrelated (circles) and a correlated process (triangles). For the correlated
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Fig. 11.4. Empirical cumulative distribution function F̂ (D) of the Kolmogorov-Smirnov distances
D between sections of a 100 year annual maxima series and the entire 10 000 year annual maxima
series. For the uncorrelated record (©) distances D are located at smaller values than for the
correlated record (△).

process, we find a distribution of distances D located at larger values. This
implies that the sections are more diverse in their distribution. Thus for cor-
related processes the variability in short realization’s maxima distribution is
larger than for the uncorrelated process. Realizations of correlated processes
are therefore not as likely to yield as representative results for the underlying
distribution as a comparable sample of an uncorrelated process.

Since the variability of the return level estimator is a result of the variabil-
ity of realization’s maxima distribution, we employ this illustrative example
and study the estimator’s variability among sections of a long record. Ideally,
the properties of this long record should be close to the underlying properties
of the process under consideration. This requires a satisfying model for the
maxima series’ distribution and the autocorrelation function. In the approach
pursued here, we initially provide two separate models for the two charac-
teristics. Realizations of these two models are then combined to obtain one
realization satisfying both, the desired distribution and the Acf.

11.4.2 Modelling the distribution

The aim of modelling the distribution is to provide means for generating real-
izations used in a later step of the bootstrap procedure.
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For the semi-parametric approach, the distribution of the maxima is mod-
elled by the empirical cumulative distribution function from the observed se-
ries. This means realizations from this model can be obtained simply by sam-
pling with replacement from the observed maxima series [11.17].

The full parametric approach exploits the Fisher-Tippett theorem for ex-
treme values (Sect. 11.2.1). It uses the parametric Gev family as a model for
the maxima distribution. Realizations are then obtained directly by sampling
from the parametric model fitted to the empirical maxima series.

11.4.3 Modelling the ACF

At this point, we are mainly interested in an adequate representation of the
empirical Acf. Such a representation can be achieved by modelling the series
under investigation with a flexible class of linear time series models. We do not
claim that these models are universally suitable for river run-off series. How-
ever, together with a static non-linear transformation function and a determin-
istic description of the seasonal cycle, they capture the most dominant features
regarding the stochastic variability. Especially, an adequate representation of
the Acf can be achieved, which is the objective of this undertaking. These
models are obviously not adequate for studying, e.g., the effect of changing
precipitation patterns on run-off or other external influences. This is, however,
not in the focus of this paper.

ARMA Processes . A simple and prevailing correlated stochastic process
is the autoregressive process of first order (Ar[1]) process (or red noise) fre-
quently used in various geophysical contexts, e.g., [11.26, 11.41, 11.63]. For a
random variable Xt, it is a simple and intuitive way to describe a correlation
with a predecessor in time by

Xt = φ1Xt−1 + σηηt, (11.3)

with ηt being a Gaussian white noise process (ηt ∼ WN (0, 1)) and φ1 the
lag-one autocorrelation coefficient. This approach can be extended straight-
forwardly to include regressors Xt−k with lags 1 ≤ k ≤ p leading to Ar[p]
processes allowing for more complex correlation structures, including oscilla-
tions. Likewise lagged instances of the white noise process ψlηt−l (moving av-
erage component) with lags 1 ≤ l ≤ q can be added leading to Arma[p,q]
processes, a flexible family of models for the Acf [11.9, 11.10]. There are
numerous applications of Arma models, also in the context of river-runoff,
e.g., [11.7, 11.27, 11.59].

FARIMA Processes . Since Arma processes are short-range dependent,
i.e. having a summable Acf [11.4], long-range dependence, which is frequently
postulated for river run-off [11.40, 11.43, 11.47], cannot be accounted for. It
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is thus desirable to use a class of processes able to model this phenomenon.
Granger [11.24] and Hosking [11.29] introduced fractional differencing to the
concept of linear stochastic models and therewith extended the Arma family
to fractional autoregressive integrated moving average (Farima) processes. A
convenient formulation of such a long-range dependent Farima process Xt is
given by

Φ(B)(1 −B)dXt = Ψ (B)ηt, (11.4)

with B denoting the back-shift operator (BXt = Xt−1), ηt ∼ WN (0, ση) a
white noise process, and d ∈ R the fractional difference parameter. The latter
is related to the Hurst exponent, which is frequently used in hydrology by
H = d + 0.5 [11.4]. The autoregressive and moving average components are
described by polynomials of order p and q

Φ(z) = 1 −

p
∑

i=1

φiz
i, Ψ (z) = 1 +

q
∑

j=1

ψjz
j , (11.5)

respectively. In practice, the fractional difference operator (1 − B)d has to be
expanded in a power series, cf. [11.24]. A Farima[p, d, q] process is stationary
if d < 0.5 and all solutions of Φ(z) = 0 in the complex plane lie outside the
unit circle. It exhibits long-range dependence or long-memory for 0 < d < 0.5.
Processes with d < 0 are said to possess intermediate memory, in practice
this case is rarely encountered, it is rather a result of ‘over-differencing’ [11.4].
Recently, the Farima model class has been used as a stochastic model for
river run-off, e.g., [11.4, 11.33, 11.40, 11.43, 11.44]. Also self-similar processes
are sometimes used in this context. The latter provide a simple model class,
but are not as flexible as Farima processes and are thus appropriate only in
some specific cases. Farima models, however, can be used to model a larger
class of natural processes including self-similar processes. (For a comprehensive
overview of long-range dependence and Farima processes refer to [11.4,11.46]
and references therein.)

Parameter Estimation . The model parameters (φ1, ..., φp, d, ψ1, ..., ψq) are
estimated using Whittle’s approximation to the Ml-estimator [11.4]. It oper-
ates in Fourier space – with the spectrum being an equivalent representation
of the autocorrelation function [11.48] – and is computationally very efficient
due to the use of the fast Fourier transform. Therefore, the Whittle estimator
is especially useful for long records where exact Mle is not feasible due to
computational limits.

The model orders p and q are a priori unknown and can be determined
using the Hannan-Quinn Information Criterion Hic which is advocated for
Farima processes:

HIC = N log σ̂2
η + 2c log logN(p + q + 1), (11.6)
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with c > 1, σ̂2
η the Ml estimate of the variance of the driving noise ηt and

p + q + 1 being the number of parameters [11.5, 11.6, 11.25]. We choose the
model order p and q such that the Hic takes a minimum.

Indirect Modelling of the Maxima Series’ ACF. Modelling the Acf of a
run-off maxima series is usually hampered by the shortness of the records. For
a short time series it is often difficult to reject the hypothesis of independence,
cf. Sec. 11.3. To circumvent this problem, we model the daily series and assume
that the resulting process adequately represents the daily series’ Acf. It is used
to generate long records whose extracted maxima series are again modelled
with a Farima[p, d, q] process. These models are then considered as adequate
representatives of the empirical maxima series Acf. This indirect approach of
modelling the maxima series’ Acf relies on the strong assumption that the
model for the daily series and also it’s extrapolation to larger time scales is
adequate.

Modelling a Seasonal Cycle . The seasonal cycle found in a daily river
run-off series has a fixed periodicity of one year. It can be modelled as a deter-
ministic cycle C(t) which is periodic with period T (1 year): C(t+ T ) = C(t).
Combined with the stochastic model X(t) this yields the following description:

Y (t) = C(t) +X(t). (11.7)

In the investigated case studies C(t) is estimated by the average yearly cycle
obtained by averaging the run-off Q(t) of a specific day over all M years, i.e.
Ĉ(t) = 1/M

∑

j Q(t+ jT ), t ∈ [1, T ], cf. [11.28].

Including a Static Non-Linear Transformation Function. River run-
off is a strictly positive quantity and the marginal distribution is in general
positively skewed. This suggests to include an appropriate static non-linear
transformation function in the model. Let Z = T (Y ) denote the Box-Cox
transformation (cf. 11.10.3, [11.8]) of the random variable Y (Eq. 11.7). Then
Z is a positively skewed and strictly positive variable, suitable to model river
run-off. One can think of this static transformation function as a change of
the scale of measurement. This transformation has been suggested for the
modelling of river run-off by Hipel and McLeod [11.28].

The full model for the Acf can be written as

Φ(B)(1 −B)dXt = Ψ (B)ηt (11.8)

Y (t) = C(t) +X(t) (11.9)

Z(t) = T (Y ). (11.10)

Simulation of FARIMA Processes. Several algorithms are known to simu-
late data from a Farima process (for an overview refer to [11.1]). Here, we use
a method based on the inverse Fourier transform described in [11.60]. It was
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originally proposed for simulating self-similar processes but can be straightfor-
wardly extended to Farima processes.3

11.4.4 Combining Distribution and Autocorrelation

Having a model for the distribution and for the Acf we can generate real-
izations, i.e. a sample {Wi}i=1,...,N from the distribution model and a series
{Zi}i=1,...,N from the Farima model including the Box-Cox transformation
and, if appropriate, the seasonal cycle. To obtain a time series {Qi}i=1,...,N

with distribution equal to the one of {Wi}i=1,...,N and Acf comparable to that
of {Zi}i=1,...,N , we employ the iterative amplitude adjusted Fourier transform
(Iaaft).

The Iaaft was developed by Schreiber and Schmitz [11.51] to generate
surrogate time series used in tests for nonlinearity [11.58]. The surrogates are
generated such that they retain the linear part of the dynamics of the original
time series including a possible non-linear static transfer function. This implies
that the power spectrum (or Acf, equivalently) and the frequency distribu-
tion of values are conserved. The algorithm basically changes the order of the
elements of a record in a way that the periodogram stays close to a desired
one [11.52].

Besides using the Iaaft on the daily series to generate an ensemble of sur-
rogates (denoted as iaaftd), we employ this algorithm also to create records
{Qi}i=1,...,N with a periodogram prescribed by a series {Zi}i=1,...,N and a fre-
quency distribution coming from {Wi}i=1,...,N .

11.4.5 Generating Bootstrap Ensembles

With the described methods we are now able to build a model for the distri-
bution and Acf of empirical maxima series and combine them to obtain long
records. This provides the basis of the full parametric bootstrap ensembles
bootstrapfp and the semi-parametric ensemble bootstrapsp.

In detail, the strategies to obtain the ensembles bootstrapfp and bootstrapsp

can be outlined as follows:

1. Model the correlation structure of the maxima
a) If necessary, transform the daily run-off data to follow approximately

a Gaussian distribution using a log or Box-Cox transform [11.8, 11.28],
cf. 11.10.3.

b) Remove periodic cycles (e.g., annual, weekly).

3 An R package with the algorithms for the Farima parameter estimation (based on the code from
Beran [11.4]), the model selection (Hic) and the simulation algorithm can be obtained from the
author.
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c) Model the correlation structure using a Farima[p, d, q] process, select
the model orders p and q with Hic (Sect. 11.4.3).

d) Generate a long series from this model (Nlong & 100Ndata).
e) Add the periodic cycles from 1a). The result is a long series sharing the

spectral characteristics, especially the seasonality with the empirical
record.

f) Extract the annual maxima series.
g) Model the correlation structure of the simulated maxima series using a

Farima[pmax, d, qmax] process, with orders pmax and qmax selected with
Hic.

2. Model the distribution of the maxima according to the approach used
bootstrapfp: Estimate the parameters of a Gev model from the empirical

maxima series using Mle (Sect. 11.2.2).
bootstrapsp: Use the empirical maxima distribution as model.

3. Generate an ensemble of size Nensemble of maxima series with length Nmax

with correlation structure and value distribution from the models built in
1 and 2:
a) Generate a series {Zi} with the Farima[pmax, d, qmax] model from step

1f) of length NensembleNmax back-transform according to 1a)4.
b) Generate a sample {Wi} with length NensembleNmax

bootstrapfp from the Gev model specified in step 2a).
bootstrapsp from sampling with replacement from the empirical maxima

series.
c) By means of Iaaft {Wi} is reordered such that its correlation struc-

ture is similar to that of {Zi}. This yields the run-off surrogates
{Qi}i=1,...,NensembleNmax

.
d) Splitting {Qi}i=1,...,NensembleNmax

into blocks of size Nmax yields the desired
ensemble.

Estimating the desired return level from each ensemble member as described
in Sect. 11.2.2 yields a frequency distribution of return level estimates which
can be used to assess the variability of this estimator.

11.5 Comparison of the Bootstrap Approaches

A comparison of the four different bootstrap approaches bootstrapcl, iaaftd,
bootstrapfp, and bootstrapsp, is carried out on the basis of a simulation study.
We start with a realization of a known process, chosen such that its correlation
structure as well as its value distribution are plausible in the context of river

4 Instead of back-transforming here, one can Box-Cox transform the outcome of step 3b) combine
the results with Iaaft as in step 3c) and back-transform afterwards. This procedure turned out
to be numerically more stable.
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run-off. Here, this is a Farima process similar to those used in [11.43] with
a subsequent exponential transformation to obtain a log-normal distribution.
This process is used to generate a Monte Carlo ensemble of simulated daily
series. For each realization we extract the maxima series and estimate a 100-
year return level. We obtain a distribution of 100-year return level estimates
which represent the estimators variability for this process. In the following, this
distribution is used as a reference to measure the performance of the bootstrap
approaches. A useful strategy should reproduce the distribution of the return
level estimator reasonably well.

We now take a representative realization out of this ensemble and consider
it as a record, we possibly could have observed. On the basis of this “observed”
series. From this record, we generate the four bootstrap ensembles according
to the approaches presented in Sect. 11.4.5. The resulting four frequency dis-
tributions of the 100-year return level estimates are then compared to the
distribution of the reference ensemble and to the asymptotic distribution of
the Ml-estimator.

11.5.1 Monte Carlo Reference Ensemble

We simulate the series for the reference ensemble with a Farima[1, d, 0] pro-
cess with parameters d = 0.25 (or H = 0.75), φ1 = 0.9, variance σ2 ≈ 1.35,
Gaussian driving noise η, and length N = 36 500 (100 years of daily obser-
vations). The skewness typically found for river run-off is achieved by subse-
quently transforming the records to a log-normal distribution. To resemble the
procedure of estimating a 100-year return level we extract the annual maxima
and estimate a 0.99 quantile using a Gumbel distribution as parametric model.
From an ensemble of 100 000 runs, we obtain a distribution of 100-year return
levels (0.99 quantiles) serving as a reference for the bootstrap procedures.

11.5.2 The Bootstrap ensembles

Taking the “observed” series, we generate the four bootstrap ensembles ac-
cording to Sect. 11.4.5. Since iaaftd and bootstrapcl are well described in the
literature, we focus on the semi-parametric and full-parametric approach.

Following the outline in Sect. 11.4.5, we start modelling the correlation
structure of the “observed” series using a Farima process as described in
Sect. 11.4.3. As a transformation, we choose a log-transform as a special case
of the Box-Cox. We treat the process underlying the sample as unknown and fit
Farima[p, d, q] models with 0 ≤ q < p ≤ 4. Figure 11.5 shows the result of the
model selection criterion Hic (Eq. (11.6)) for these fits. The Farima[1, d, 0]
with parameters and asymptotic standard deviation: d = 0.250 ± 0.008, φ =
0.900 ± 0.005, σ2

η = 0.0462 yields the smallest Hic and is chosen to model
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the record. Thus, the proper model structure is recovered and step 1b) is
completed.
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Fig. 11.5. Comparison of the Hic of different Farima[p, d, q] models. Smaller values indicate a
better model. On the abscissa different model orders [p, q] are plotted (0 ≤ q ≤ 3, 0 ≤ p ≤ 4 and
q ≤ p). The model orders are discrete, the lines connecting the discrete orders [p, q] are drawn to
enhance clarity.

With this model we generate an artificial series longer than the original
one (Nlong = 100Ndata) according to step 1c). The extracted annual max-
ima series contains Nmax = 10 000 data points. Since we do not expect the
Acf of this maxima series to require a more complex model (in terms of
the number of parameters) than the daily data, we use orders p ≤ 1 and
q = 0, leaving only two models. The Farima[0, d, 0] has a slightly smaller
Hic value (Hic[0,d,0]=21792.06) than Farima[1, d, 0] (Hic[1,d,0]=21792.40) and
will thus be chosen in the following, step 1f). The resulting parameters are
d = 0.205 ± 0.008 and σ2

η = 0.535.

Having modelled the correlation structure we now need a representation
for the distribution. For the full-parametric bootstrap ensemble bootstrapfp,
we get back to the “observed” series and model the annual maxima with a
parametric Gumbel distribution, step 2a). This results in Ml-estimates for the
location and scale parameters: µ = 10.86, σ = 8.35. Since the semi-parametric
approach bootstrapsp does not need a model but uses a classical bootstrap
resampling from the empirical annual maxima series, we now can generate
the desired bootstrap ensembles bootstrapfp and bootstrapsp both with 1 000
members according to step 3.
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Figure 11.6 compares the frequency distributions of estimated return levels
from the four bootstrap ensembles to the reference distribution (grey filled)
and to the asymptotic distribution of the Ml-estimator (dotted). The left plot
shows the result of the bootstrapcl (solid) and the iaaftd (dashed) ensembles.
While bootstrapcl accounts for more variability than the asymptotic distribu-
tion, iaaftd exhibits less variability, although it takes autocorrelation of the
daily data into account. This might be due to the fact that the records in
the iaaftd ensemble consists of exactly the same daily run-off values arranged
in a different order. While this allows for some variability on the daily scale,
an annual maxima series extracted from such a record is limited to a much
smaller set of possible values. Since the temporal order of the maxima series
does not influence the return level estimation, the variability of the estimates
is reduced.

The right panel in Fig. 11.6 shows the result from the bootstrapsp (solid)
and the bootstrapfp (dashed) ensembles. The latter strategy is slightly better
than the nonparametric bootstrap resampling but still yields a too narrow
distribution. In contrast, the result from the bootstrapsp ensemble gets very
close to the reference ensemble. Thus, this approach is a promising strategy
to improve the uncertainty analysis of return level estimates and is studied in
more detail in the following section.
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Fig. 11.6. Comparison of the result for different bootstrap ensembles to the Mc reference ensemble
(grey area) and the asymptotic distribution of the Ml-estimator (dotted). The bootstrap ensembles
consist each of 1 000 members. The left plot shows the results of the nonparametric bootstrap
resampling and the daily Iaaft surrogates. The full parametric and semi-parametric bootstrap
strategies are shown in the right plot.
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11.5.3 Ensemble Variability and Dependence on Ensemble Size

We investigate the potential of the semi-parametric bootstrap approach by
studying its inter-ensemble variability and the dependence on ensemble size.
This can be achieved by performing an extensive simulation study, i.e. gener-
ating different sets of bootstrapsp ensembles, each set containing 100 ensembles
of a fixed size. We are interested in the variability of the ensemble runs within
one set of fixed size and, as well as in the effect of the ensemble size. The
ensemble size varies between Nensemble = 50 and Nensemble = 6 000. To facilitate
the representation of the result, we do not consider the entire distribution of
the return level estimates for each ensemble, but rather 5 selected quantiles
with relative frequencies of 5%, 25%, 50%, 75%, and 95%. Figure 11.7 shows
these quantiles estimated from the ensembles for different ensemble sizes as
grey dots. Due to the large number of grey dots, they cannot be perceived as
individual dots but rather as grey clouds.
The variability of the quantile estimates decreases with increasing ensem-
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Fig. 11.7. The quantiles of the semi-parametric bootstrap ensembles of different size. 100 ensembles
of the same size are grouped in a set. The 5%, 25% 50% 75% and 95% quantiles of each ensemble in
a set is marked with a grey dot. This results in grey areas representing the variability within a set.
The solid lines connect the sets’ mean values for each quantile. The quantiles from the reference
ensemble are represented as a dotted line.
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ble size indicated by the convergence of the grey clouds for each of the five
quantiles. Consequently, the ensemble size should be chosen according to the
accuracy needed. For small sizes, the means of the selected quantiles are close
to the values from the reference ensemble, especially for the three upper quan-
tiles. With an increasing size, difference to the reference ensemble increases
for the extreme quantiles until they stagnate for ensembles with more than
about 2000 members. For the 5% and 95% quantiles, the difference between
the bootstrap and the Monte Carlo is less than 6% of the return-levels estimate.

11.6 Case Study

To demonstrate the applicability of the suggested semi-parametric bootstrap
approach (bootstrapsp), we exemplify the strategy with a case study. We con-
sider the run-off record from the gauge Vilsbiburg at the river Große Vils in the
Danube River catchment. Vilsbiburg is located in the south-east of Germany
about 80km north-east of Munich. The total catchment area of this gauge ex-
tends to 320km2. The mean daily run-off has been recorded from 01/11/1939
to 07/01/2002 and thus comprises Nyears = 62 full years or N = 22 714 days.
The run-off averaged over the whole observation period is about 2.67 m3/s.

Extreme Value Analysis . First, we perform an extreme value analysis as
described in Sect. 11.2.2, i.e. extracting the annual maxima and determining
the parameters of a Gev distribution by means of Ml-estimation. In order to
test whether the estimated shape parameter ξ̂ = 0.04 is significantly different
from zero, we compare the result to a Gumbel fit using the likelihood-ratio
test [11.12]. With a p-value of p = 0.74 we cannot reject Gumbel distribution
as a suitable model on any reasonable level. The resulting location and scale
parameters with asymptotic standard deviation are µ = (28.5 ± 2.0)m3/s and
σ = (15.0±1.5)m3/s. The associated quantile and return level plots are shown
in Fig. 11.8 together with their 95% asymptotic confidence limits.

According to Eq. (11.2) we calculate a 100-year return level (m = 100) and
use the delta method (11.21) to approximate a standard deviation under the
hypothesis of independent observations: r100 = 97.7 ± 7.9.

Modelling the ACF of the Daily Series. In the second step, we model
the correlation structure which requires preprocessing of the run-off series: To
get closer to a Gaussian distribution, a Box-Cox transformation (sect. 11.10.3)
is applied to the daily run-off. The parameter λ = −0.588 is chosen such that
the unconditional Gaussian likelihood is maximised. Subsequent to this static
transformation, we calculate the average annual cycle in the mean and the
variance, cf. Sect. 11.4.3. The cycle of in the mean is subtracted from the
respective days and the result is accordingly divided by the square root of
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Fig. 11.8. Result of the Ml-estimation of the Gumbel parameters for the Vilsbiburg yearly maxima
series compared to the empirical maxima series in a quantile plot (left panel) and return level plot
(right panel).

the variance cycle. As we find also indication for a weekly component in the
periodogram, we subtract this component analogously. The Box-Cox trans-
formation as well as the seasonal filters have been suggested by Hipel and
McLeod [11.28] for hydrological time series. Although the proposed estimates
of the periodic components in mean and variance are consistent, especially the
estimates of the annual cycle exhibits a large variance. Several techniques such
as STL [11.11] are advocated to obtain smoother estimates. Studying those
periodic components is, however, not in the focus of this paper.

Figure 11.9 shows a comparison of the transformed and mean adjusted
daily run-off record to a Gaussian distribution in form of a density plot (left
panel) and a plot of empirical versus theoretical quantiles (right panel). The
transformed distribution is much less skewed than the original one. Differences
to a Gaussian are mainly found in the tails.

We now fit Farima[p, d, q] models of various orders with 0 ≤ q ≤ 5, 0 ≤ p ≤
6 and q ≤ p and compare the Hic of the different models in Fig. 11.10(left). The
smallest value for the Hic is obtained for the Farima[3, d, 0] process, which is
thus chosen to model the autocorrelation of the daily run-off. The parameters
estimated for this process with their asymptotic standard deviation are: d =
0.439 ± 0.016, φ1 = 0.415 ± 0.017, φ2 = −0.043 ± 0.007, φ3 = 0.028 ± 0.008
and σ2

η = 0.2205. Using the goodness-of-fit test proposed by Beran [11.4], we
obtain a p-value of p = 0.015. The model thus cannot be rejected on a 1%
level of significance. The result of this fit is shown in the spectral domain in
Fig. 11.10(right).

Modelling the ACF of the Maxima Series. Using this model, a long
series is generated with Nlong = 100Ndata. This simulated series is partially
back-transformed: the overall mean and the seasonal cycles in mean and vari-
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ance are added. Note, that the Box-Cox transform is not inverted in this step.
From the resulting record, we extract the annual maxima series. Figure 11.2
(left panel) shows the Acf of the original maxima series (solid) and com-
pares it to the Acf of a section of the same length cut out of the maxima
series gained from the simulated run (dotted). The original series has been
Box-Cox transformed as well to achieve a comparable situation. The autocor-
relation basically fluctuates within the 95% significance level (dashed) for a
white noise. However, the full maxima series from the simulated run of 6 200
data points exhibits prominent autocorrelation (Fig. 11.2, right panel). This
indicates that, although an existing autocorrelation structure is not necessarily
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visible in a short sample of a process, it might still be present. Accounting for
this dependence improves the estimation of confidence limits.

In the next step, we model the correlation structure of the maxima series
with a Farima process. Again, we do not expect this series being more ade-
quately modelled by a more complex process than the daily data. We use Hic

to choose a model among orders pmax ≤ p = 3, qmax ≤ q = 1. The smallest val-
ues for the Hic is attained for a Farima[0, d, 0] model with d = 0.398±0.010.
The goodness-of-fit yields a p-value of p = 0.319 indicating a suitable model.

Combining Distribution and ACF. Having the model for the Acf of the
maxima series, we are now able to generate a bootstrap ensemble of artificial
data sets according to the semi-parametric strategy bootstrapsp as described in
Sect. 11.4.5. We use Iaaft to combine the results of the Farima simulation
with the Box-Cox transformed resampled empirical maxima series. In the last
step the ensemble is restored to the original scale of measurement by inverting
the Box-Cox transform we started with.

Calculating the Confidence Limit. Subsequently, the 100-year return level
r̂∗ (or 0.99 quantile) is estimated for each ensemble member yielding the de-
sired distribution for the 100-year return level estimator shown in Fig. 11.11.
From this distribution we obtain an estimate for a (1 − α)% one-sided upper
confidence limit rα using order statistics. rα is calculated from order statistics
as rα = r̂100 − (r̂∗(N+1)α − r̂100) [11.17], where the r̂∗i are sorted in ascending

order. With an ensemble size Nensemble = 9 999 we ensure (N + 1)α being an
integer for common choices of α.

To facilitate the comparison of the 95% confidence limits obtained from
the bootstrap ensemble (r0.95

boot ≈ 148m3/s) and the asymptotic distribution
(r0.95

asymp ≈ 110m3/s) they are marked as vertical lines in Fig. 11.11. The boot-
strap 95% confidence level r0.95

boot clearly exceeds the quantile expected from
the asymptotic distribution confirming the substantial increase in uncertainty
due to dependence. Furthermore, the tails of the bootstrap ensemble decay
slower than the tails of the asymptotic distribution. The interpretation of such
a confidence level is the following: In 95% of 100-year return level estimates
the expected (“true”) 100-year return level will not exceed the 95% confidence
limit.

11.7 Discussion

The approach is presented in the framework of Gev modelling of annual max-
ima using maximum likelihood. The concept can also be applied in the context
of other models for the maxima distribution (e.g., log-normal) or also different
parameter estimation strategies (e.g., probability weighted moments). Further-
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more, it is conceivable to extend the class of models describing the dependence
to Farima models with dependent driving noise (Farima-Garch [11.20]) or
seasonal models [11.40, 11.44].

The modelling approach using Farima[p,d,q] models and a subsequent ad-
justment of the values has been investigated in more detail by [11.61]. Using
simulation studies, it was demonstrated that the combination of Farima mod-
els and the Iaaft is able to reproduce also other characteristics of time series
then the distribution and power spectrum. Also the increment distribution and
structure functions for river run-off are reasonably well recovered.

In the approach described, we obtain a model for the Acf of the maxima
series only with the help of a model of the daily series. The longer this daily
series is the more reliable the model will be. Regarding the uncertainty of
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return level estimates, we might consider this approach with the assumption
of long-range dependence as complementary to the assumption of indepen-
dent maxima. The latter assumption yields the smallest uncertainty while, the
assumption of long-range dependence yields larger confidence intervals which
can be considered as an upper limit of uncertainty. The actual detection of
long-range dependence for a given time series is by no means a trivial prob-
lem [11.41] but it is not in the focus of this paper.

It is also possible to include available annual maxima in the procedure for
periods where daily series have not been recorded. This enhances the knowledge
of the maxima distribution but cannot be used for the modelling of the Acf.

11.8 Conclusion

We consider the estimation of return levels from annual maxima series using
the Gev as a parametric model and maximum likelihood (Ml) parameter es-
timation. Within this framework, we explicitly account for autocorrelation in
the records which reveals a substantial increase in uncertainty of the flood
return level estimates. In the standard uncertainty assessment, i.e. the asymp-
totic confidence intervals based on the Fisher information matrix or the profile
likelihood, autocorrelations are not accounted for. For long-range dependent
processes, this results in uncertainty limits being too small to reflect the actual
variability of the estimator. On the way to fill this gap, we study and compare
four bootstrap strategies for the estimation of confidence intervals in the case
of correlated data. This semi-parametric bootstrap strategy outperforms the
three other approaches. It showed promising results in the validation study
using an exponentially transformed Farima[1,d,0] process. The main idea in-
volves a resampling approach for the annual maxima and a parametric model
(Farima) for their autocorrelation function. The combination of the resam-
pling and the Farima model is realized with the iterative amplitude adjusted
Fourier transform, a resampling method used in nonlinearity testing. The re-
sults of the semi-parametric bootstrap approach are substantially better than
those based on the standard asymptotic approximation for Mle using the
Fisher information matrix. Thus this approach might be of considerable value
for flood risk assessment of water management authorities to avoid floods or
misallocation of public funds. Furthermore, we expect the approach to be ap-
plicable also in other sectors where an extreme value analysis with dependent
extremes has to be carried out.

The practicability is illustrated for the gauge Vilsbiburg at the River Vils
in the Danube catchment in southern Germany. We derived a 95% confidence
limit for the 100-year flood return level. This limit is about 38% larger than
the one derived from the asymptotic distribution, a dimension worth being
considered for planing options. To investigate to what extend this increase in
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uncertainty depend on catchment characteristics, we plan to systematically
study other gauges. Furthermore, a refined model selection strategy and the
accounting for instationarities due to climate change is subject of further work.
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11.10 Appendix

11.10.1 General Extreme Value Distribution

Consider the maximum

Mn = max{X1, . . . , Xn} (11.11)

of a sequence of n independent and identically distributed (iid) variables
X1, . . . , Xn with common distribution function F . This can be, for example,
daily measured run-off at a gauge; Mn then represents the maximum over n
daily measurements, e.g., the annual maximum for n = 365. The three types
theorem states that

Pr{(Mn − bn)/an ≤ z} → G(z), as n→ ∞, (11.12)

with an and bn being normalisation constants and G(z) a non-degenerate dis-
tribution function known as the General Extreme Value distribution (Gev)

G(z) = exp

{

−

[

1 + ξ

(

z − µ

σ

)]

−1/ξ
}

. (11.13)

z is defined on {z|1+ ξ(z−µ)/σ > 0}. The model has a location parameter µ,
a scale parameter σ and a form parameter ξ. The latter decides whether the
distribution is of type II (Fréchet, ξ > 0) or of type III (Weibull, ξ < 0). The
type I or Gumbel family

G(z) = exp

[

− exp

{

−

(

z − µ

σ

)}]

, {z| −∞ < z <∞} (11.14)
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is obtained in the limit ξ → 0 [11.12].
It is convenient to transform Eq. (11.12) into

Pr{Mn ≤ z} ≈ G((z − bn)/an) = G∗(z). (11.15)

The resulting distribution G∗(z) is also a member of the Gev family and allows
the normalisation constants and the location, scale and shape parameter to be
estimated simultaneously.

We consider an autocorrelated stationary series {X1, X2, . . .} and define a
condition of near-independence: For all i1 < . . . < ip < j1 < . . . < jq with
j1 − ip > l,

|Pr{Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq
≤ un} −(11.16)

Pr{Xi1 ≤ un, . . . , Xip ≤ un}Pr{Xj1 ≤ un, . . . , Xjq
≤ un}| ≤ α(n, l),(11.17)

where α(n, ln) → 0 for some sequence ln, with ln/n → 0 as n → ∞. It can
be shown that the three types theorem holds also for correlated processes
satisfying this condition of near-independence [11.12, 11.39]. This remarkable
result implies that the limiting distribution of the maxima of uncorrelated and
(a wide class) of correlated series belongs to the Gev family.

11.10.2 Maximum-Likelihood Parameter Estimation of the GEV

Let {Mn,1,Mn,2, . . . ,Mn,m} be a series of independent block maxima observa-
tions, where n denotes the block size and m the number of blocks available for
estimation. We denote Mn,i as zi. The likelihood function now reads

L(µ, σ, ξ) =
m
∏

i=1

g(zi;µ, σ, ξ), (11.18)

where g(z) = dG(z)/dz is the probability density function of the Gev. In
the following, we consider the negative log-likelihood function l(µ, σ, ξ|zi) =
− logL(µ, σ, ξ|zi).

Minimising the log-likelihood with respect to θ = (µ, σ, ξ) leads to the Ml

estimate θ̂ = (µ̂, σ̂, ξ̂) for the Gev. Under suitable regularity conditions –
among them independent observations zi – and in the limit of large block sizes
(n→ ∞) θ̂ is multivariate normally distributed:

θ̂ ∼ MVNd(θ0, IE(θ0)
−1) (11.19)

with IE(θ) being the expected information matrix (or Fisher information ma-
trix) measuring the curvature of the log-likelihood. Denoting the elements of
the inverse of IE evaluated at θ̂ as βj,k we can approximate an (1 − α)100%

confidence interval for each component j of θ̂ by
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θ̂j ± zα
2

√

βj,j, (11.20)

with zα
2

being the (1−α/2) quantile of the standard normal distribution [11.12].
The m-year return level can be easily calculated as specified in equa-

tion (11.2). An approximated confidence interval for r̂m can be obtained under
the hypothesis of a normally distributed estimator r̂m and making use of the
standard deviation σr̂m

. The latter can be calculated from the information
matrix using the delta method [11.12]. For the Gumbel distribution we obtain

σ2
r̂m

= β11 − (β22 + β21) log(− log(1−
1

m
)) + β22(log(− log(1−

1

m
)))2. (11.21)

11.10.3 Box-Cox Transform

The Box-Cox transformation can be used to transform a record {xi} such that
its distribution is closer to a Gaussian. For records {xi} with xi > 0 for all i,
it is defined as [11.8]

y =

{

(xλ
−1)
λ

, λ 6= 0
log(x), λ = 0

We choose the parameter λ such that the unconditional Gaussian likelihood
is maximised. Hipel also advocate the use of this transformation for river run-
off [11.28].
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11.3 A. Bárdossy and S. Pakosch. Wahrscheinlichkeiten extremer Hochwasser unter sich ändernden
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